Remote sensing of mineral dust aerosol using AERI during the UAE: A modeling and sensitivity study

نویسندگان

  • R. A. Hansell
  • K. N. Liou
  • S. C. Ou
  • S. C. Tsay
  • Q. Ji
  • J. S. Reid
چکیده

[1] Numerical simulations and sensitivity studies have been performed to assess the potential for using brightness temperature spectra from a ground-based Atmospheric Emitted Radiance Interferometer (AERI) during the United Arab Emirates Unified Aerosol Experiment (UAE) for detecting/retrieving mineral dust aerosol. A methodology for separating dust from clouds and retrieving the dust IR optical depths was developed by exploiting differences between their spectral absorptive powers in prescribed thermal IR window subbands. Dust microphysical models were constructed using in situ data from the UAE and prior field studies while composition was modeled using refractive index data sets for minerals commonly observed around the UAE region including quartz, kaolinite, and calcium carbonate. The T-matrix, finite difference time domain (FDTD), and Lorenz-Mie light scattering programs were employed to calculate the single scattering properties for three dust shapes: oblate spheroids, hexagonal plates, and spheres. We used the Code for High-resolution Accelerated Radiative Transfer with Scattering (CHARTS) radiative transfer program to investigate sensitivity of the modeled AERI spectra to key dust and atmospheric parameters. Sensitivity studies show that characterization of the thermodynamic boundary layer is crucial for accurate AERI dust detection/retrieval. Furthermore, AERI sensitivity to dust optical depth is manifested in the strong subband slope dependence of the window region. Two daytime UAE cases were examined to demonstrate the present detection/retrieval technique, and we show that the results compare reasonably well to collocated AERONET Sun photometer/MPLNET micropulse lidar measurements. Finally, sensitivity of the developed methodology to the AERI’s estimated MgCdTe detector nonlinearity was evaluated.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

بهره گیری از سری زمانی داده های ماهواره ای به منظور اعتبارسنجی کانون های شناسایی شده تولید گرد و غبار استان البرز

Dust is one of the common processes of arid and semiarid regions that its occurrence frequencies has increased in recent years in Iran. The proper identification of sand and dust storms (SDS) is particular importance due to its impact on the environment and human health. So far, several methods for identifying these sources have been proposed such as methods based on field studies and geomorpho...

متن کامل

Investigating the relationship between ground-level particulate matter and aerosol optical depth during dust storm episodes: a case study of Tehran

Background and Objective: During the last few years, air pollution and increasing levels of particulate matters (PMs) have become major public health issues in the megacity of Tehran. The high cost of constructing and maintaining air pollution monitoring stations has made it difficult to achieve adequate spatial-temporal coverage of PM data over various regions. In this regard, the use of remot...

متن کامل

Numerical and Synoptic Study of Emission, Transport and Identify Potential Sources of a Severe Dust Storm Over Middle East

One of the powerful tools in dust storms analysis that have recently found extensive application is atmospheric-chemistry numerical modeling. Spatial and temporal distribution of Middle Eastern dust for a severe dust event during 4-8 July 2009 was analyzed by Weather Research and Forecasting with Chemistry (WRF/Chem) model simulations and remote sensing observations. The HYSPLIT model is applie...

متن کامل

Seasonal Study of Dust Deposition and Fine Particles (PM 2.5) in Iran Using MERRA-2 Data

The research results indicated that wet and dry dust deposition is a function of geographical characteristics. The seasonal wet and dry dust deposition and Fine Particles (PM 2.5) correlation in Iran with elevation, latitude and longitude results that the maximum correlation belongs to height, followed by latitude and longitude; meanwhile height and latitude are strongly and reversely correlate...

متن کامل

Analysis and Tracking Dust Phenomenon in South and Southeast of Iran by using HYSPLIT Model and the Principles of Remote Sensing

 Dust is one of the environmental hazards and atmospheric phenomena familiar to residents of the southern and southeastern parts of the country. Which each year causes a lot of damages to various sectors such as environment, agriculture, health, transportation, facilities, and so on. Therefore, in this research, we investigated and identified the sources of dust in the area, the intensity and f...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008